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Aklract. We obtain general formulae to calculate exactly the orbital Aharonw-Anandan 
phase for a bounded system interacting with a precessing magnetic field in the Case where 
the binding potential is rotationally invariant around the axis of rotation of the magnetic 
field, The particular ease of a quadratic potential is mnsidered in full detail, and 
the connection with the stability problem is established. me adiabatic limit of the 

~ Aharonov-Ammdan ~~~~~ ~ phase !o ohttiin !he correspnding Re- phase is also considered. 

1. Introduction 

As is well known, the Hilbert space of states of any quantum system 7f can be seen 
as a fibre bundle with base space the projective state space and fibre U(1). There 
is a canonicai connection in this fibre bundie p i j ,  which aiiows one to iift curves 
in the base into horizontal curves in the fibre bundle; the horizontal lift in 71 of a 
closed path in the base is in general open. The curve starts and ends in the same 
fibre but at different points, and the holonomy of the path is the Aharonov-Anandan 
(AA) geometric phase [l]. This geometric phase is associated to any closed path in 
the projective state space, regardless of whether or not it is an actual evolution curve 
for the system. in  generai reiaiiviiy, there is aiso an hoionomy associated to ciosed 
circuits in spacetime, but these circuits cannot be made of a single closed future 
time-like geodesic. 

The situation for the holonomy described by geometric phases (both general and 
adiabatic [5-71) is different, because it could happen that the actual evolution of a 
system follows a closed curve in the projective state space. This is the case for cyclic 
s.aies, .w:reie a quantGm sysjj;,T, zvgkqes .un&i ;%e of a Ham;icria2 iii jiich a 
way that after a lapse of time T it returns to its initial state, i.e. I$(T)) = ei+/$(o)). 
These states allow a direct experimental study of geometric phases, because a closed 
path of the system is simply provided by time evolution. 

In this paper we study orbital geometric phases for a system with cyclic states: a 
charged spinless particle in a Hamiltonian of the type 

1 e 2 
H ( 1 )  = - ( p -  -A(r,t)) + V(T) 2m C 

where A(r, t )  is the vector potential associated to a rotating magnetic field and V ( r )  
is a binding potential with rotational invariance around the axis of rotation of the 

t Permanent address: Departamento de FisiCa, CINVESTAV IPN, MCxico. 
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magnetic field (say, the x3-axis). We will obtain explicit expressions for the AA phase, 
by transforming the original time-dependent problem into a time-independent one 
in the rotating frame. If the new time-independent ‘Hamiltonian’ possesses bounded 
states, then we will show that the corresponding states are cyclic, and that their 
AA phases are proportional to the expectation values of the third component of the 
angular momentum in these states. Moreover, these phases will be related to the 
corresponding ‘energy’ eigenvalues in the rotating frame. This procedure can be fully 
carried out in the case of a binding quadratic potential (including zero), and the 
system presents two different behaviours according to the values of some parameters. 
In one case the motion is confined and there exist cyclic evolutions while in the other 
the trajectories are deconfined and it is not possible to obtain a cyclic evolution. 
Regarding the confinement regions for these kinds of systems, the reader may refer 
to the works of Mielnik and Fern6ndez-C 18-11] and references therein. 

This complements a recent paper 1121, where we have studied geometrical AA 
phases for ;-spin systems evolving under periodic time-dependent magnetic fields, and 
their adiabatic limits; Berry’s phase is recovered as a first-order term, the remaining 
ones describing deviations from adiabaticity. We also consider here the behaviour 
of AA phases for the system (1.1) in the adiabatic limit. In order to recover Berry’s 
phases, by making the precession frequency go to zero, some care must be exercised. 
This is so because in this limit the system could be brought outside the confinement 
domain, this is particularly evident when V = 0. In this case, even though in the non- 
adiabatic situation the charged particle could be trapped by the precessing magnetic 
field, when w + 0 the motion along the magnetic field direction becomes free, and 
we do not have cyclic states at all (although one degree of freedom still produces a 
cyclic motion). If taken carefully, however, the adiabatic limit of the AA phase turns 
out to he the ‘correct way’ to calculate the corresponding Berry phase. 

The paper is organized as follows. In section 2 we present a general analysis to 
evaluate AA phases for a system described by a Hamiltonian of the form (1.1). The 
case in which V is a binding quadratic potential is analysed in section 3, where we also 
establish the conection between the existence of the bounded (cyclic) states and the 
existence of the stability (trapping) regions for the corresponding dynamical systems. 
In section 4, we discuss on the stability and instability regions for mme physically 
interesting quadratic examples and the adiabatic limit of their corresponding AA 
phases. 
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2. AA phase in a precessing magnetic field 

Let a charged spinless particle interact with a precessing magnetic field described by 
the generic Hamiltonian (1.1), where e < 0, A(T,t) = -4. x B ( t )  and 

B(1) =(Ecoswt,Bsinwl,E,)  

Suppose that V(T) is rotationally invariant around x,-axis. Then (1.1) can be written 
(with li = 1) as 

P2 e e’ 
2m 2mc H ( t ) =  - - - - - L * B ( t ) + - { r 2 B ( t ) 2 - [ ~ . B ( t ) ] 2 ] + V  8mcZ 



Orbital Aharonov-Anandan geometric phase 6411 

The equation for the evolution operator b'(t), 

(2.3) 
d --U(t) = -iH(t)U(t)  d t  U ( 0 )  = I 

can be transformed in a time-independent equation by means of a 'transition to the 
rotating frame', i.e. U ( t )  = w (t) [&lo, 13-14]. Then 

(2.4) 
d - -W(t)  = - iGW(t)  dt  W(0)  = I 

where G appears as a time-independent Hamiltonian in the rotating frame, 

G = H ( 0 )  - wL?. (2.5) 

Note that the operator G depends linearly and continuously on w. The solution of 
(2.4) is immediate, W ( t )  = e-iG*, leading to 

(2.6) = e-iwtLje-iGt 

P *L". *l.̂ ^^^^ .___ ^ E  ,-. :.. 2: ̂^_^.^ .̂.A --- II ------ "1- IF..- 
O Y Y ~ D C  ILUW ~ i i n i  LUG J ~ G L U U U L  UL U 13 UW\.ICLC aiiu Irun-ucgcrrcraic {LUL vaiuw 

of the parameter w around the frequency of precession of the magnetic field (2.1)), 
and let {IS,)] be a set of normalized bounded states with eigenvalue E,,. So we have 

GIG,) = LIG,,) (2.7) 

where we assume that !$%) and E= depend continuously on w. From (2.6) and (2.7), 
the time evolution of I+,,) is simply 

I*,,) ' (2.8) u(~)J+,) = e-iE,te-iwtLj 

For t = 2n/w E T, this relation reduces to 

Hence, the bounded state I+,,) becomes cyclic and could possess a geometric phase. 
Following [l], the AA phase associated to any cyclic state I+(T)) = ei*l+(0)) is 

(2.10) 

In our case q5 = -&T and 

(2.11) d 
d t  - (~ ( t ) l+ , , ) )  = -i(En + wL3)e-iEmte-iWtL3 I&). 

rr-:-- II 4 4 ,  "-2 .L- cam. &t."& I.,. \ :- A..,. :-A"..--A.,-+ I? In\ t..̂ nrr-.r uuug {L.", aiiu ~ i i c  L ~ L L  uiai I w,, 13 nni~-niucy=riuciir, {L.LV,  VGWIIIW 

Pn = z r ( $ n I b I + n ) .  (2.12) 

This gives a simple expression for p; however, it requires the knowledge of 
Sometimes it is easier to find the eigenvalues of G, so we will transform (2.12) to 
an equivalent relation involving the w dependence of E,, around the fixed value of w 
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given in (2.1). Deriving (2.7) with respect to w, using (2.5) and noticing that H ( O )  
does not depend on w we get 
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Finally, inserting (2.14) into (2.12) gives the desired relation 

(2.13) 

(2.14) 

(2.15) 

Expressions (2.14) and (2.15) are valid when the eigenvalue &, is non-degenerate. 
Geometric phases for degenerate cases have been largely studied in the literature 
(see e.g. [ij-itijj. in our probiem the same technique as that used in tine above 
non-degenerate case can be applied even if there is degeneration; however some 
care must be exercised if the degeneration changes with w. We illustrate in figure 1 
some possible different cases for the w dependence of the eigenvalues of G(w), 
including an example of level crossing; this raises the question of whether level 
crossing is actually possible for the Hamiltonian (2.5). It is clear that levels can cross 

even if [ H ( O ) ,  L3] # 0. Indeed, when the theory developed in section 3 is applied 
to the examples in section 4, examples with crossings appear; we furnish details for a 
such situation in section 4 (Case A). 

i; [E@), L3j = 6, an6 as far 8s we h o w  no general pnncippie preci"(jes level 

I w 
0, 

Flgure 1. Possible dependence of the eigenvalues of G with W .  The two curves associated 
to E5 are superposed, but we shift one of them to illustrate double degeneraq for all w. 
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Consider first the case of 'levels' E, and E3 at w = w,. For close values of w, 
&(w) and E3(w) are non-degenerate eigenvalues, with state vectors l+,(w)) and 
lQ3(w)) ,  which are orthogonal (even for w = w1 by continuity in w); for these we 
have 

Furthermore, if equation (2.13) for IG2(w)) is multiplied by ( l i t3 (w) [  and the limit 
w + w1 is taken, one easily concludes that ($3(~1)1L31.12(wl)) = 0. So if we refer 
a generic state of 'energy' &z(wl)  = .Z3(w1)-to this basis, 1.1) = azl+,) + a31.13), the 
geometric phase p associated with the cyclic evolution of the initial state I+) after a 
time interval Twill be equal to 2r(+IL31.1). and 

Different cyclic states in the same eigenspace will give different values of the 
geometric phase. 

For the case where the degeneration does not change with w (as in &5 in figure 1) 
we have a single function E5(w); the reasoning leading to (2.14) and (2.15) is 
applicable without any change, with any initial vector 1.1) in the eigenspace of G(w). 
At first sight (2.14) is somewhat surprising, because its right-hand side is independent 
of the specific vector I+), while there does not seems not to be any a priori reason 
which would make the left-hand side also independent of I+). However, it can be 
readily seen from perturbation theory (see for instance [17]) that if the degeneration 
does not change with w,  then (.11L31.1) should indeed be independent of the vector 
IQ) in the corresponding eigenspace of G(w). 

Equations (2.12) and (2.15) could serve to evaluate the geometric phases in 
very diverse situations. In particular, they would be useful if V is a radial binding 
potential (the Morse potential, the hydrogen atom potential, etc), although concrete 
calculations would be hard. In the following we will restrict ourselves to the simple 
case in which V is a quadratic form in (zl. zz, z3), and where the &, can be obtained 
directly. 

3. Example: the quadratic case 

The mmt general quadratic potential with axial symmetry around the z3-axis reads 

with V, and V, constants. The discrete spectrum of the Hamiltonian (2.5) can be 
easily found because G is quadratic in uT = ( r , p )  [8-11.18-211: 
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where b = l e lB/2mc > 0, bo = lelB&mc > 0, va = 2 & / m  and uI = 2 v , / m .  
Following [&lo], we first study the evolution of the Heisenberg canonical trajectories 
in the rotating frame given by 

David J FernCindez C er a1 

(3.3) 
= eiGtUe-iGl = e A I u  

where the 6 x 6 matrix A, obtained through [iG,u] = Au, reads 
0 w - bo 0 l / m  0 

0 -b 
b 0 0 

0 w - b o  0 
b o - w  0 -6 ‘/O” b l 8 1  0 . 

A = [  (3.4) 

-m(b i  + VO) 0 mbba 
0 -m(b2  + bi + va) 0 

mbbo 0 - m ( b 2 + v l )  0 

Quantum as well as classical motions are determined by the roots of the characteristic 
polynomial of A 

(3.5a) P(X) = Det( X I  - A )  = A‘+ CIA4 + C2A2 + C3 

where 
C, = 4b2 + 46: + 2v0 + u, - 4b0w + 2u2 
C2= 2w(w-2ba)(v l  - v o ) + 4 b o w 2 ( b o - w ) + w  2 2  (w +3b2)  

C3 = w(2b0 - w)(2v0vI  + 2baqw - v l w  2 - b 2 2  w ) + vo(vovl - b2w2) , 

{a = b / w ,  a. = b o / w ,  yo = vo/w 2 , y1 = vl/w2} . 

(3.5b) + vo(vo + 4b2) + 2v1(v0 + 26:) 

For the case where A is diagonalizable, there exist two different behaviours for u(t), 
which depend on the values taken by the set of four dimensionless parameters 

(3.6) 
(1) AU the six roots of P(A) are non-null and imaginary, hence the spectral 
decomposition of eAt will consist of the superposition of three independent oscillating 
motions which, according to (3.3), will induce confined motions on the canonical 
vector u(t); 
(2) At least two roots of P(A) have a non-null real part; then the spectral 
decomposition of eAt will contain an exponential term and, therefore, the trajectories 
(3.3) will be, in general, deconfined. 

The above cases also apply in relation with the spectrum of G. So, in the case 
where the parameters (3.6) fall into the confinement domain, G can be expressed 
as the superposition of three harmonic oscillator Hamiltonians and, therefore, the 
spectrum of G will be discrete. On the other hand, if the system parameters fall into 
a deconfinement region, at least a contribution to (3.2) will consist of a repulsive 
oscillator Hamiltonian and the spectrum of G will be continuous. 

To obtain the AA phase (given by (2.15)) explicitly, suppose that the parameters 
(3.6) belong to the confinement domain; then, the eigenvalues of A take the form 
{fiwl,fiw2,fiw3), and G can be expressed as [8,10] 

3 

G = ciwi @]Ai + 2) (3.7) 
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where At = e i u ,  A, = efu, and ei are the row eigenvectors of A, e i A  = b e . ,  '. ' which form a dual system to the column eigenvectors r; of A, A r j  = i w j r j ,  i.e. 
eirj = 4,. The coefficients ei in (3.7) may take on the values +1 or -1 and come 
from the evaluation of the commutation relationships between the set of operators 
{Ai,Af,i,j = 1,2,3} 

Note that we are using the name 'harmonic oscillator Hamiltonian' in a broad sense. 
Indeed, if some of the e j  takes the value -1, its corresponding wjcontribution to G 
will consist of the so-called anfi-oscillator Hamiltonian (see for instance [20]), but we 
will not use that terminology here. 

The discrete spectrum of G (see (3.7)) has the form 

(3.9) 

From (2.15), the geometric phase associated to the cyclic state Inl, n2, n,) is 
3 .  

i= l  

Inserting X = iwi in (3.5) and using P(iwi) = 0, we evaluate awi /aw in terms of 
mi .  Then 

(3.10) 

Summarizing the results of this section, the evaluation of the geometric (AA) 
phases associated to the cyclic states of the Hamiltonian (2.2)-(3.1) has been reduced 
to the determination of the domain of the parameters (3.6) for which all the roots 
of P(X) are imaginary (confinement domain). Once this domain has been delimited, 
we use P(iwJ) = 0 to find the wJ and to obtain the discrete spectrum of the 
Hamiltonian in the rotating frame through (3.9). Finally, we insert the wJ into (3.11) 
to determine p. 

For completeness, we give the explicit expressions of the wJ in terms of 
cl? c2, c 3 :  

where 

(3.12) 



6416 

4. Discussion 

The confinement and deconfinement domains for some quadratic Hamiltonians of 
type (2.2), (3.1), (3.2) have been studied for a sequence of interesting physical 
arrangements [&lo]. We are going to describe briefly some cases for particular 
values of the potential term. 

Case A. The simplest example is obtained by taking B # 0 and Bo = Vo = 
V, = 0; the system analysed is then a spinless charged particle evolving in a 
rotating magnetic field [8-9,22]. The confinement domain is an interval in the a-line 
(a = l e l B / 2 m c w )  [&9]: 

So confinement implies that for fiied B, the precession frequency should be larger 
than approximately ( l e l B / 2 m c )  x &. The characteristic frequencies in (3.7) 
depend continuously on w and when they are labelled so that 0 < w1 < w2 < w3, 
the coefficients ei turn out to be et = 1, eZ = -1, e3 = 1. The explicit expression 
for the level Enlnzn3 is 

The presence of a minus sign makes the existence of level crossings plausible, and 
this is indeed confirmed by numerical computations. For instance, the levels (O,O, 1 )  
and (6,1,0) cross for a value of approximately (lelB/2mc) x 2.6648327 which f a h  
inside the confinement domain. 

Case B. A generalization arises if B # 0, Bo # 0 and Vo = Vt = 0 (the 
charged particle evolving now in a precessing magnetic field). For this system we 
have performed a numerical study whose result is shown in figure 2: there are two 
confinement regions in the a - a. plane (ao = le lBo/2mcw),  labelled as Tt and T2. 
Note that when Bo -+ 0 (ao - 0), we recover the case discussed in case A. 

David J Fernhndez C et al 

0 < a < acr c= 0.579982. 

= w1 (n1+ 4)  - wz (n2 + f.) + w3 (n3 + f) ' 

a0 

0.5 

L a  
0.2 0.4 0.6 0.8 1 

Figure 2. Division of the a - ag plane acmrding to the generic motion induced by 
the field (2.1) on a charged particle. The regions labclled as 7'1 and T2 belong to the 
confinement domain. and the others are in the unconfined domain. 
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Case C. Another interesting physical system can be obtained making B # 0, 
Bo = 0 and V, = V, = mwa/2. With this choice of parameters, a threedimensional 
charged oscillator inside a rotating magnetic field is being considered. This system has 
proved successful in the analysis of the resonances for a bounded system immersed 
in a particular kind of external radiation. Its confinement regions (marked as TI ,  T2 
and T3 in figure 3) were previously evaluated in [lo], and are represented on the 
a - w  plane of figure 3, w = wo/w = fro. Once again, in the limit wo - 0 (w - 0) 
we recover the case A. 

W 

T2 
0.8 

0.6 

CL 

Flgure 3. Plot of the domains in the oi - U) plane for the case C discussed in section 4, 
where a rotating magnetic field praduces ‘oscillating’ motions in the rotating frame. 
Regions TI, Tz and T3 form the confinement domain. 

CaseD. A further generalization encompassing the three previous cases is obtained 
if B # 0, E,  # 0, -6 = V, = mw$/2  (the charged oscillator in the precessing 
magnetic field). The confinement regions will be volume elements which could be 
represented in (a, a,,, w) coordinates. In the limit when Bo - 0 (CY,, - 0) these 
volume elements will coincide with the two-dimensional regions TI, T2 and T3 of 
figure 3 (case C), while when wo - 0 (w - 0) that domain will go into the two 
confinement regions T, and T, of figure 2 (case B). 

In all these examples, the applicability of the techniques of sections 2 and 3 is 
restricted by the corresponding confinement domains: when the motion is confined, 
the AA phase is given simply by (3.10). (3.11). An interesting question to be explored 
is the behaviour of the AA phases when w --- 0. This can be performed globally for all 
the cases if we consider just the adiabatic limit for case D. So an explicit calculation 
provides the following adiabatic frequencies: 
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where the superscript a is used to indicate the adiabatic nature of the expressions 
(4.1). The a w i / a w  are in this limit 

David J Femhndez C er al 

The other cases are obtained by particularizing the values of some parameters for each 
example. As we can see from (3.10) and (4.1), (4.2). when wo + 0 two contributions 
to the adiabatic phase, a w : / a w , ( i  = 1,3), have no sense because in this case the 
two roots w; ,  w! are zero and two degrees of freedom of the motion are deconfined, 
so the states are not cyclic. However, the third one produces a confined motion 
and its contribution to the adiabatic phase, proportional to aw;/au,  equals the solid 
angle in the parameter space of the magnetic field [SI. The situation is different 
if wo # 0. In this last case, all the contributions (4.2) to the adiabatic phase are 
well defined and two of them, as usual, are proportional to the solid angle in the 
parameter space. 
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